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Dispersionless motion in a periodically rocked periodic potential
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Recently, dispersionless (coherent) motion of (noninteracting) massive Brownian particles, at intermediate
time scales, was reported in a sinusoidal potential with a constant tilt. The coherent motion persists for a finite
length of time before the motion becomes diffusive. We show that such coherent motion can be obtained
repeatedly by applying an external zero-mean square-wave drive of appropriate period and amplitude instead
of a constant tilt. Thus, the cumulative duration of coherent motion of particles is prolonged. Moreover, by
taking an appropriate combination of periods of the external field, one can postpone the beginning of the
coherent motion and can even have coherent motion at a lower value of position dispersion than in the constant

tilt case.
DOTI: 10.1103/PhysRevE.80.062102

The inertial Brownian particle motion in periodic poten-
tials [1,2] has been an archetypal model to theoretically un-
derstand many phenomena in physical systems. The current-
voltage characteristics of the resistively coupled shunted
junction (RCSJ) model of Josephson junctions [3], the elec-
trical conductivity of superionic solids [4], the motion of
adatoms on the surface of a crystal [5], etc., are some of the
important examples [1]. However, not all behaviors of the
model particle motion in all time regimes are exhaustively
investigated. A recent example being the discovery of disper-
sionless particle motion in a tilted periodic potential in the
intermediate time regime by Lindenberg and co-workers [6].
During the coherent motion, the ensemble averaged position
dispersion, Ax(f)=((x(t)—(x(¢)))*), remains constant.

This interesting phenomenon is shown (numerically) by
particles moving on a cosinusoidal potential with a constant
tilt (CT), Fy, in a medium with constant friction coefficient
Yo [6] in a limited (F,, vy,) region. The particles, after cross-
ing the immediate barrier, move (after =7, > 7%, the Kram-
ers mean passage time) coherently with velocity v = F/ vy,.
The coherent motion continues until it is overwhelmed (at
around ¢=1,) by the diffusive motion of the particles. 7, and
7, are specified only as a rough guide [6]. In this work we
investigate the effect of a zero-mean square-wave (ZMSW)
external drive F(¢) of half period 7 and amplitude F|, instead
of a CT.

The coherent motion, naturally, gets interrupted upon re-
versal of direction of F at t=7 (7, < 7<7,). Interestingly, as
a main result of this work, the coherent motion once dis-
turbed, by reversing the field at r=7, gets reestablished
around 7=7+7; in almost the same form as it was during
71 <t<m, in the CT case. And this loss and subsequent re-
covery of coherent motion continue for a large number of
reversals of F(r). The dispersion Ax(r), however, increases
rapidly during 7<t<7+7. [During 0<t<m, Ax(z)~1*
where a=2.]

We consider the motion of an ensemble of Brownian
particles each of mass m moving in a potential V(x)
==V, sin(kx) in a medium with friction coefficient [7] y(x)
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=%l 1-N\ sin(kx+ ¢)] at temperature T (in units of kz) and
subjected to an external force field F(¢). The corresponding
Langevin equation is given by [8]

d’ d —
s == Y+ Vok cos ket F) + YT, (1)

where the Gaussian distributed zero-mean random forces &(r)
satisfy (&(n)&(t")y=28(t-1").

Recalling the conductivity term in the “cos ¢ problem” in
the Josephson junction parlance, the friction coefficient y(x)
has an exact correspondence. \ in y(x) is analogous to the
ratio of conductivities associated with the Cooper-pair tun-
neling and the quasiparticle tunneling. The additional non-
zero phase ¢ in y(x) is important. The phase difference ¢
between potential V(x) and 7y(x) introduces the required
asymmetry in the otherwise spatially symmetric problem to
obtain ratchet current. Note that the frictional nonuniformity
does not affect the static equilibrium particle position distri-
bution unlike in the case of temperature nonuniformity. Fric-
tional inhomogeneity becomes effective only in the dynamic
situation giving ratchet current [10,11].

For convenience we write down the Langevin equation in
terms of dimensionless variables X, 7, m, etc. All these barred
variables are written in terms of m, V,, and k, for example,
X=kx, t=0\Vok*m, Yo=wlk\mV,  T=TIV, &
=&(m/Vy)"*k~12, etc. Omitting the bars over the dimension-
less variables the resulting scaled Langevin equation be-
comes

&
dr

&(r) again satisfying (&(r)&(r'))=268(t—1").

The applied square-wave forces F(r) are taken as F(r)
==*F, for [2nT7=t<(2n+1)7] and F(r)=FF, for [(2n
+1)7=1<(2n+2)7] with n=0,1,2,.... For constant applied
force F(rf)=F, (for all ¢) the equation is solved using the
matrix continued fraction method and also numerically, sup-
porting each other quantitatively [1,9-12]. However, for fi-
nite 7, the equation could be solved only numerically. The
integration of the equation, using the fourth-order Runge-
Kutta method [14], was carried out in time steps of Ar

=- y(x)% +cos x+ F(t) + \*’yy(x)Tg(t), (2)
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FIG. 1. The position dispersion Ax()’s for 7=5000 (a), 400 (b),
and 200 (c) are plotted. The inset shows curve (a) extended to 16
half periods together with the curve for the CT case. The dotted
horizontal line is drawn to guide the eyes. Note that #, <60 000.

=0.001. We choose to take y,=0.035. This is a typical value
of friction where the system exhibits hysteresis [13].

We take A=0.9 and ¢$=0.35. \ #0, however, is relevant
only while discussing ratchet current at the end. In fact, ex-
cept for this minor point, all the results discussed in the
following qualitatively remain the same for the simpler case
of A=0.

The particles exhibit coherent motion in the potential
V(x)==sin(x)—xF in the intermediate times roughly in the
range 7,(=2 X 10%) <t<r1(=3X%10% for F,=0.2. There-
fore, we choose the ZMSW field F(r) of amplitude Fy=0.2
and, in most cases, half period 7=5000 which is well within
the range [7),7,]. Naturally, in the first half period (0<t
= 7) the motion is the same as in the CT case. In all cases,
we take the initial (r=0) particle position distribution as
5(x—’2—7) and Maxwell velocity distribution corresponding to
T=0.4. Note that after every half period 7 the periodic po-
tential gets tilted in the reversed direction as a result of field
reversal.

Curve (a) of Fig. 1 and its extended plot in the inset show
that by applying the field, F(z), with 7=5000, a repetitive
sequence of trains of coherent motion, with characteristic
constant Ax(z), is obtained. These bursts of coherent motion
are quite robust. Each burst of coherent motion is preceded
by a length of dispersive particle motion. As a result Ax()
grows, in discrete steps, with time, as the number n of half
periods increases.

The generation of coherent motion continues for many
(n>8) half periods (7=5000) of F(r) (inset of Fig. 1). Thus,
as an important consequence, the cumulative duration
[=n(7— )] of coherent motion when driven by F(z) is made
much larger than the duration, 7,(==60 000)— 7, achievable
in the CT case as shown in the inset of Fig. 1.

In Fig. 1 Ax corresponding to the half periods 7=400
[curve (b)] and 200 [curve (c)] are also plotted. The impor-
tant feature to be noticed in the figure is that for 7=400,
200< 7%, 77, Ax dips immediately after the field is reversed
before it rises. This behavior of dispersion dipping and sub-
sequent rise becomes most pronounced at a small but inter-
mediate 7. It continues for many periods of F(z).

Figure 2 summarizes the main results of this work. It
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FIG. 2. Ax(7)’s for three 7=5000 (a), ten 7=400 and two T
=5000 (b), five 7=200 and two 7=5000 (c), five 7=200 and one
7=10 000 (d), and one 7=5000 and five 7=400 (e) half periods are
plotted.

shows many interesting effects of taking few initial half pe-
riods of F(t) of smaller duration, 7=400 [curve (b)] and 7
=200 [curves (c¢) and (d)], and then making its later half
periods 7=5000 or larger [e.g., 10 000; curve (d)]. Curves (b)
and (c) show that, in this case too, during the later half pe-
riods 7=5000 of F(¢), a similar sequence of trains of coher-
ent motion, as in Fig. 1, inset [or curve (a)], can be obtained.
It also allows us to postpone [curve (b)] the appearance of
coherent motion beyond ¢=7;. Moreover, it is possible to
obtain coherent motion with lower constant dispersion
[curves (c) and (d)] than in the CT case [i.e., lower than the
constant Ax in the first half period in curve (a)] too. Curve
(e) shows that curves (b)—(d) can be repeated, using the same
customized procedure, many times over again.

The results of Figs. 1 and 2 can be understood by analyz-
ing the time evolution of velocity distribution, P(v). P(v)’s
at various phases of F(r) at t=57 and t=7+15.6 for 7
=5000 and at t=27 and r=27+16 for 7=1000 are shown in
Fig. 3. P(v) invariably assumes almost a Gaussian form of
same width and centered at a fixed v= * F,/ vy, at t=nr for
7=5000. The inset, showing the mean velocity () and ve-
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FIG. 3. P(v)’s at t=25 000 (right peak) and 25 015.6 (middle
thin line) for 7=5000 and at r=2000 (bimodal, dashed-dotted) and
2016 (middle bold line shifted vertically by 0.15) for 7=1000. 0(z)
and Av(r) for 7=5000 are plotted (0= * Fy/ 7y, lines drawn) in the
inset.
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TABLE 1. The systems considered are (1) Ag, Ag on Agl lattice, (2) MM, a macromolecule along a polymer, and (3) JJ, Josephson

A

junction. The symbols have their usual meaning. The RCSJ-model JJ equation is equivalent to Eq. (2.1) in [3]: %(dzﬂ/ dr)+5-G[1

+\ cos(6+ ¢)]Z_o

.1, sin(0)=1(r)+ V2TG[1+\ cos(6+ p)]&(r). (Add -7 to 6 for exact correspondence.)

m (kg) Vo V) T (K) k (m™") wo (s oy (kgsT) (s Fy (n) 7 (s) a:% (ms™)

Ag  1.79x107%® 015 348 0.57x10'0 4.07x102 255x107% 142x10'" 503x1071° 1.23x107° 1.48x10°

MM 332Xx1072 013 300 257X 108 6.20%x10° 7.21x107" 2.17x10% 3.25X10713 8.06x 1077 451X 10
e _ _ _ _ _ = I

CEPF) L (A) TmK) FV'sh) o) GO w=g6) LA 7(s) V=5 (V)

1 0.5 107° 9.53 3.038x 10" 246Xx10° 431x107 8.63x107 20x107® 203X10° 4.64x107*

locity dispersion Av(z), supports this observation. However,
at t=nX 1000, P(v) has two peaks, one centered at v
~ * Fy/ v, and the other at v=0.

The P(v) peak at v=0 shows that at t=nr, for 7<7,
some particles are left behind in the locked state in one or
some other wells. The smaller the 7 is, the more prominent
this latter peak is left at r=7. These locked particles try to
gravitate to their respective well bottoms and, being slower,
even succeed in shrinking the position distribution P(x) more
effectively than the much faster particles in the running state
on the front. Thus, for smaller 7<<7,, the bimodal nature of
P(v) helps appreciable Ax dipping immediately after field
reversal (Fig. 1).

At t=nT1+1tj, 15<ty<16, 0 becomes zero for all 7 and n.
(It turns out, 2fy= 1/, the frictional relaxation time.) The
corresponding P(v)’s are also shown in Fig. 3. For 7=5000,
P(v) at r=n7+1, is like a sum of two “Gaussians” centered
on either side of v=0. But for 7=1000, the surviving P(v)
peak at v=0 at t=n7 contributes an additional one centered
at v=0, making 0=0 at the same delay time 7.

Due to the tilt direction reversal the particles, in the run-
ning state, are forced to reverse their direction of motion and
hence each of them necessarily goes through zero velocity at
least once momentarily. Thus, the entire system passes ap-
proximately through a “thermal” state at r=n7+7,. Hence,
after every field reversal at r=n7 the particles begin their
subsequent journey in the reversed direction with almost the
same delayed initial condition (at r=n7+ 7y) of thermalized
P(v). Therefore, Ax’s are expected to behave similarly after
every nr.

As discussed above, it is just the reversal of field which
leads P(v) to the required form at t=n7+t,, irrespective of
the form of P(v) at t=n7 for any value of 7> 7,=16. It
shows that in order to obtain coherent motion neither an
exact initial Gaussian velocity distribution is necessary nor
all the particles are required to be initially confined sharply
to a single well bottom of the periodic potential. Also, mere
switching the field alternately on (F,# 0) for duration 7 and
off (Fy=0) for the same duration 7 fails to yield results like
those in Figs. 1 and 2. This indicates that a reversal of the
field direction is essential because this alone ensures a “ther-
malized” P(v).

It must also be noted that during the CT case the average
particle displacement is large, =n,F,/ vy, by the end of its
coherent motion, whereas in the ZMSW case it is zero for
A=0 and small and finite for A#0 and ¢+ 0,7 after any

large time #=2n7. This is an added practical advantage over
the CT case for, in the ZMSW case, most of the particles on
the average remain confined to a finite region of space de-
spite periodically showing coherence of motion for a long
time.

The dimensionless values of parameters used (e.g.,
=0.035, T=0.4, 7=5000, and F,=0.2) and other derived
quantities when restored to their usual units are presented in
Table I for three illustrative cases: (i) the motion of a Ag ion
in Agl crystal [15], (i) the motion of a macromolecule (ki-
nesin) along a polymer fiber (microtubule) [16], and (iii)
diffusion of Cooper pairs across a Josephson junction [3].
Notice that w(=7y,/m)<<w, in the particle motion case and
w<wp in the Josephson plasma frequency (=2el,/hC),
showing that the systems considered are, indeed, under-
damped. The last column of Table I gives the magnitude of
mean velocity (mean voltage) attained during the coherent
state when the initial value of the drive field F(z) [I(1)] is
fixed either at +|Fy| (+|Iy|) or with their sign reversed and not
an equal mixture of both. Also, during the half period 7 the
particles move to an average distance (the product of quan-
tities in the last two columns) of the order of a micron (u)
which will get retraced in the next half period. This gives a
rough idea of the sample size one would need to take in a
ZMSW case. Also, 2—:<wo(wp) (by about two orders of
magnitude).

The calculated average velocities v and velocity disper-
sions Av are plotted in the inset of Fig. 3. An equal mixture
of F(t=0)==*|F,| makes v close to zero during coherent
motion. It is exactly zero for A=0 at all ¢ and hence even in
the limit r—< v remains zero. However, for A#0 and ¢
# 0,7 a nonzero finite mean (steady state) velocity is ob-
tained [10-12] earlier. The contribution of coherent particle
motion being insignificant, the dispersive motion alone con-
tributes to this ratchet current of particles.

The diffusion constant, D, defined as lim,_., Ax()=2Dt,
is hard to calculate for a constant tilt F, [6]. The asymptotic
limit barely reaches even by t=10". However, for ZMSW
this limit is readily reached by r=10" (Fig. 4). It may be
noted that for each curve in Figs. 1 and 2 we have averaged
over 2000 realizations, but in Fig. 4 we could average over
number of realizations ranging only between 18 and 60. The
nature of Ax(z) so clear in Fig. 1 appears less convincing in
Fig. 4. Therefore, it is hard to conclude that the same nature
of Ax, as in Fig. 1, will continue until the asymptotic time
regime. However, from the thermalized P(v) argument given
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FIG. 4. Ax(7)’s for 7=1000 (a), 5000 (b), and the case of CT
Fy=0.2 (c) averaged over 20, 60, and 18 ensembles, respectively,
are plotted. Lines of slope 1 are fitted to the curves. The short line
at the lower left corner indicates Ax~ %, where a=2. The inset
shows variation of D with 7.

earlier, there is a fair likelihood that the nature of Ax(r)
shown in Fig. 1 will extend to a large number of half periods
of F(r) provided a large number of particles are considered
for averaging.

The nature of Ax(r) shown by the curves in Figs. 1 and 2
is in no finite region close to Ax(¢) ~¢. It remains, therefore,
open to explain why a large number of repeatedly same di-
verse combinations of dispersions such as ones ranging from
Ax(t)~ 1> to Ax(t) ~°, when averaged over a large number
of realizations yield the same nature of dispersion,
lim,_,,, Ax(¢) ~t¢, for all 7 (Fig. 4).

D(7)’s, plotted in the inset of Fig. 4, are rough estimates
as the averagings are done only over a small number of re-
alizations. However, the overall qualitative trend of D(7) re-
mains valid. D(7) shows a peak around 7= 7. For 7> 7, the
closer the 7is to 7; the smaller the constant Ax region is and
hence larger is the fraction of sharply rising Ax region is.

PHYSICAL REVIEW E 80, 062102 (2009)

Naturally total Ax will be larger as 7— 7. However, the
nature of D(7) as 7— 7, is not clear from the available data.
In the range 7<< T, Ax rises only after an appreciable dipping
(Fig. 1). Therefore, the initial rise of Ax is slower as 7 is
decreased from 7, resulting in a smaller total Ax(r) as ¢
— o and hence smaller D.

From the rms spread (VAx) point of view the advantage of
ZMSW F(r) over CT, except in cases like curve (d) in Fig. 2,
quickly evaporates as ¢ increases. Whereas for the CT case at
t=_107'=5 X 10*, the mean displacement x is 2.8 X 10° and
\M is 022X 10° and at t=20007=107, x=5.7x 10 and
V’M:O.OIZX 107, for the ZMSW case, at tilOT, x=0 and
VAXx=0.06 X 107, and at =107, x=0 and VAx=0.095 X 10”.
Perhaps in the ZMSW case, the particles left behind during a
7_get pushed father away during the next 7 and make the
VAx(7) increase faster as 7 increases.

Coherent motion is observed only in the negative slope
region of D(7). However, for this same system it is shown in
Ref. [12] that ratchet current is maximum for a value of 7
=500, i.e., in the rising D(7) region, and becomes signifi-
cantly small for larger 7= 7| and almost zero at 7=5000. The
peak of the D(7), thus, roughly divides 7 into two regions: (i)
small 7 giving ratchet current and (ii) larger 7 showing co-
herent motion.

To summarize, the dispersionless (coherent) motion dis-
covered earlier, to occur for a brief but finite duration in the
intermediate time regime, on a CT sinusoidal potential, was
extended to the case of periodically reversing constant tilts.
We have shown the possibility of obtaining coherent particle
motion interspersed by dispersive motion over many periods
of an external ZMSW field. The cumulative duration of co-
herent motion can, thus, be extended to a substantial fraction
of the total journey time, of course, at a cost of making the
system several times more diffusive.
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